lunes, 25 de mayo de 2009

Introducción


La vida moderna sería impensable sin la existencia de los motores, éstos se encuentran en todas partes: en la industria, el transporte, el hogar, etc. Para cualquier lado que miremos podemos encontrar una máquina que funcione con un motor. En nuestra vida diaria estamos acostumbrados a un tipo particular de motor: los motores eléctricos, pues existen en muchos de los aparatos que ocupamos en nuestro hogar (refrigerador, lavadora, licuadora, relojes de pared, etc.).
Los motores eléctricos son máquinas que convierten la energía eléctrica en mecánica. Algunos de los motores eléctricos son reversibles, es decir, pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Pueden funcionar conectados a una red de suministro eléctrico (motores eléctricos que funcionan con corriente alterna) o conectados a una batería (motores eléctricos que funcionan con corriente continua).





Principios 1:Principios básicos de funcionamiento del motor eléctrico

Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los motores eléctricos. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831.



Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se establece o se induce una corriente eléctrica en el primer conductor.


El principio opuesto a éste fue observado en 1820 por el físico francés André Marie Ampère. Si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica sobre el conductor.

Principios II:Principios de funcionamiento del motor de corriente continua

Cuando la corriente pasa a través de la armadura de un motor de corriente continua, se genera un par de fuerzas debido a la acción del campo magnético, y la armadura gira. La revolución de la armadura induce un voltaje en las bobinas de ésta. Este voltaje es opuesto al voltaje exterior que se aplica a la armadura, y de ahí que se conozca como voltaje inducido o fuerza contraelectromotriz. Cuando el motor gira más rápido, el voltaje inducido aumenta hasta que es casi igual al aplicado. La corriente entonces es pequeña, y la velocidad del motor permanecerá constante siempre que el motor no esté bajo carga y tenga que realizar otro trabajo mecánico que no sea el requerido para mover la armadura. Bajo carga, la armadura gira más lentamente, reduciendo el voltaje inducido y permitiendo que fluya una corriente mayor en la armadura.

Esquema básico de un motor eléctrico de cc.

Debido a que la velocidad de rotación controla el flujo de la corriente en la armadura, deben usarse aparatos especiales para arrancar los motores de corriente continua. Cuando la armadura está parada, ésta no tiene realmente resistencia, y si se aplica el voltaje de funcionamiento normal, se producirá una gran corriente, que podría dañar el conmutador y las bobinas de la armadura. El medio normal de prevenir estos daños es el uso de una resistencia de encendido conectada en serie a la armadura, para disminuir la corriente antes de que el motor consiga desarrollar el voltaje inducido adecuado. Cuando el motor acelera, la resistencia se reduce gradualmente, tanto de forma manual como automática.
La velocidad a la que funciona un motor depende de la intensidad del campo magnético que actúa sobre la armadura, así como de la corriente de ésta. Cuanto más fuerte es el campo, más bajo es el grado de rotación necesario para generar un voltaje inducido lo bastante grande como para contrarrestar el voltaje aplicado. Por esta razón, la velocidad de los motores de corriente continua puede controlarse mediante la variación de la corriente del campo.

Principios III:Principios de funcionamiento del motor de corriente alterna

Se diseñan dos tipos básicos de motores para funcionar con corriente alterna polifásica: los motores síncronos y los motores de inducción (asíncronos).
El motor síncrono es en esencia un alternador trifásico que funciona a la inversa. Los imanes del campo se montan sobre un rotor y se excitan mediante corriente continua, y las bobinas de la armadura están divididas en tres partes y alimentadas con corriente alterna trifásica. La variación de las tres ondas de corriente en la armadura provoca una reacción magnética variable con los polos de los imanes del campo, y hace que el campo gire a una velocidad constante, que se determina por la frecuencia de la corriente en la línea de potencia de corriente alterna.

a
Esquema básico de un motor de corriente alterna síncrono trifásico.


La velocidad constante de un motor síncrono es ventajosa en ciertos aparatos. Sin embargo, no puede utilizarse este tipo de motores en aplicaciones en las que la carga mecánica sobre el motor llega a ser muy grande, ya que si el motor reduce su velocidad cuando está bajo carga puede quedar fuera de fase con la frecuencia de la corriente y llegar a pararse. Los motores síncronos pueden funcionar con una fuente de potencia monofásica mediante la inclusión de los elementos de circuito adecuados para conseguir un campo magnético rotatorio.


El más simple de todos los tipos de motores eléctricos es el motor de inducción (asíncrono) de caja de ardilla que se usa con alimentación trifásica. La armadura de este tipo de motor consiste en tres bobinas fijas y es similar a la del motor síncrono. El elemento rotatorio consiste en un núcleo, en el que se incluye una serie de conductores de gran capacidad colocados en círculo alrededor del árbol y paralelos a él. Cuando no tienen núcleo, los conductores del rotor se parecen en su forma a las jaulas cilíndricas que se usaban para las ardillas. El flujo de la corriente trifásica dentro de las bobinas de la armadura fija genera un campo magnético rotatorio, y éste induce una corriente en los conductores de la jaula. La reacción magnética entre el campo rotatorio y los conductores del rotor que transportan la corriente hace que éste gire. Si el rotor da vueltas exactamente a la misma velocidad que el campo magnético, no habrá en él corrientes inducidas, y, por tanto, el rotor no debería girar a una velocidad síncrona. En funcionamiento, la velocidad de rotación del rotor y la del campo difieren entre sí de un 2 a un 5%. Esta diferencia de velocidad se conoce como caída.

motor de inuccion
Motor asíncrono con rotor en forma de jaula de ardilla.


Los motores con rotores del tipo jaula de ardilla se pueden usar con corriente alterna monofásica utilizando varios dispositivos de inductancia y capacitancia, que alteren las características del voltaje monofásico y lo hagan parecido al bifásico. Estos motores se denominan motores multifásicos o motores de condensador (o de capacidad), según los dispositivos que usen. Los motores de jaula de ardilla monofásicos no tienen un par de arranque grande, y se utilizan motores de repulsión-inducción para las aplicaciones en las que se requiere el par. Este tipo de motores pueden ser multifásicos o de condensador, pero disponen de un interruptor manual o automático que permite que fluya la corriente entre las escobillas del conmutador cuando se arranca el motor, y los circuitos cortos de todos los segmentos del conmutador, después de que el motor alcance una velocidad crítica. Los motores de repulsión-inducción se denominan así debido a que su par de arranque depende de la repulsión entre el rotor y el estátor, y su par, mientras está en funcionamiento, depende de la inducción. Los motores de baterías en serie con conmutadores, que funcionan tanto con corriente continua como con corriente alterna, se denominan motores universales. Éstos se fabrican en tamaños pequeños y se utilizan en aparatos domésticos.

Desarrollo de la aplicación.El vehículo elétrico.

El coche eléctrico fue uno de los primeros automóviles que se desarrollaron, hasta el punto que existieron pequeños vehículos eléctricos anteriores al motor de cuatro tiempos sobre el que Diésel (motor diésel) y Benz (gasolina), basaron el automóvil actual. Entre 1832 y 1839 (el año exacto es incierto), el hombre de negocios escocés Robert Anderson, inventó el primer vehículo eléctrico puro. El profesor Sibrandus Stratingh de Groningen, en los Países Bajos, diseñó y construyó con la ayuda de su asistente Christopher Becker vehículos eléctricos a escala reducida en 1835.

La mejora de la pila eléctrica, por parte de los franceses Gaston Planté en 1865 y Camille Faure en 1881, allanó el camino para los vehículos eléctricos. En la Exposición Mundial de 1867 en París, el inventor austríaco Franz Kravogl mostró un ciclo de dos ruedas con motor eléctrico. Francia y Gran Bretaña fueron las primeras naciones que apoyaron el desarrollo generalizado de vehículos eléctricos. En noviembre de 1881 inventor francés Gustave Trouvé demostró un automóvil de tres ruedas en la Exposición Internacional de la Electricidad de París.


Los motores eléctricos destacan por su alta eficiencia a diferentes regímenes de funcionamiento. Para analizar su eficiencia energética hemos de centrarnos en la forma de suministro de energía eléctrica al motor. El futuro de los vehículo
s puramente eléctricos (sin contar con el apoyo de un motor de combustión interna, esto es, vehículos híbridos) parece pasar por las nuevas generaciones de acumuladores químicos (Batería de ión de litio) cada vez con mayor densidad de carga y longevidad, que permiten mover motores más potentes y aumentar la autonomía hasta los 200 e incluso 400 km .
El gasto energético del motor de un vehículo eléctrico oscila entre los 10 y los 20 kWh en un recorrido tipo de 100 km.
En España, el coste del kWh para pequeños consumidores es de 0,11€. Por lo tanto, a grosso modo, podemos afirmar que el coste de utilización de un vehículo eléctrico está entre 1,1€/100 km t 2.2€/Km.